

Towards application of AI to MS State of the art

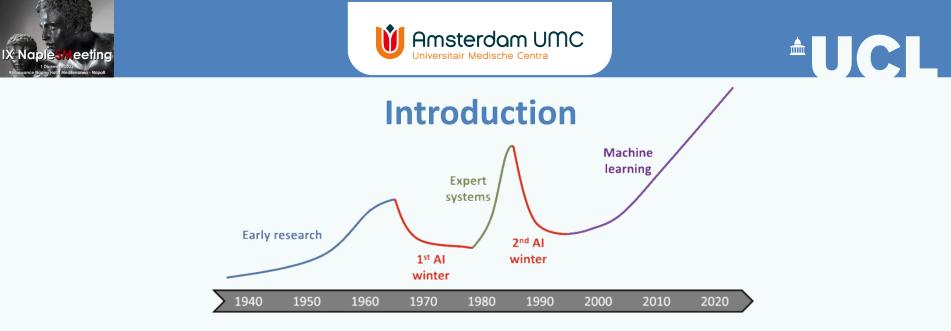
IX NapleSMeeting 1st Dec 2023, Napoli

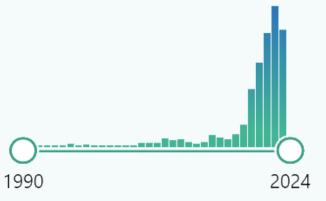
aples Meeting

Giuseppe Pontillo, MD, PhD

Disclosures

Giuseppe Pontillo received research grants from MAGNIMS, ESNR, and ECTRIMS


- Introduction
- AI for MRI acquisition and analysis
- AI for the diagnosis of MS
- Al for patient stratification
- Conclusions



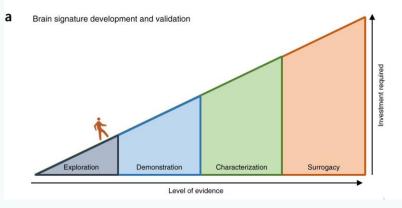
- Introduction
- AI for MRI acquisition and analysis
- AI for the diagnosis of MS
- Al for patient stratification
- Conclusions

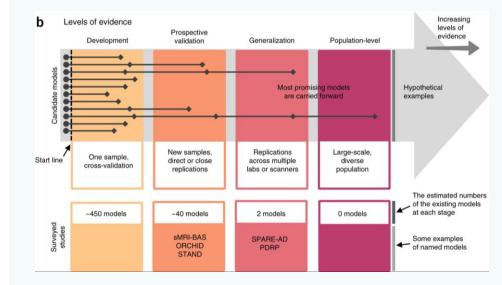
Search query: "multiple sclerosis" AND ("artificial intelligence" OR "machine learning" OR "deep learning")

Colliot, et al. Machine Learning for Brain Disorders 2023

Introduction

npj Digital Medicine www.nature.com/npjdigitalmed	Radiology: Artificial Intelligence Special Report			
REVIEW ARTICLE OPEN Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review Anne A. H. de Hond ^{1,2,3,8,Ξ} , Artuur M. Leeuwenberg ^{01,8,Ξ} , Lotty Hooft ^{4,5} , Ilse M. J. Kant ^{1,2,3} , Steven W. J. Nijman ⁰¹ , Hendrikus J. A. van Os ^{2,6} , Jiska J. Aardoom ^{6,7} , Thomas P. A. Debray ⁰¹ , Ewoud Schuit ^{6,1} , Maarten van Smeden ⁴ , Johannes B. Reitsma ⁴ , Ewout W. Steyerberg ^{2,3} , Niels H. Chavannes ^{6,7} and Karel G. M. Moons ⁴	Artificial Intelligence and Radiology Education Ali S. Tejani, MD • Hesham Elhalawani, MD • Linda May, MD • Marc Kabli, MD • Charles E. Kahn, Jr, MD, MS Radiology: Artificial Intelligence Will Artificial Intelligence Replace Radiologists?			
Radiology: Artificial Intelligence EDITORIAL AI Reporting Guidelines: How to Select the Best One for Your Research Michail E. Klontzas, MD, PhD • Anthony A. Gatti, PhD • Ali S. Tejani, MD • Charles E. Kalm, Jr, MD, MS	Curtis P. Langlotz, MD, PhD Radiology: Artificial Intelligence Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers			
Instruction DEEP Mathematicine Mathematicine Pranav Rajpurkar © 14, Emma Chen24, Oishi Banerjee ²⁴ and Eric J. Topol © 3 12	John Mongan, MD, PhD • Linda Moy, MD • Charles E. Kahn, Jr; MD, MS > Lancet Digit Health. 2023 Jul;5(7):e400-e402. doi: 10.1016/S2589-7500(23)00090-0. Position statement on clinical evaluation of imaging AI Cathal McCague ¹ , Katherine MacKay ² , Ceilidh Welsh ³ , Alex Constantinou ³ , Rajesh Jena ⁴ , Mireia Crispin-Ortuzar ⁵ ; Imaging AI evaluation consensus group			




Introduction

Building better biomarkers: brain models in translational neuroimaging

<u>Choong-Wan Woo, Luke J Chang, Martin A Lindquist</u> & <u>Tor D Wager</u> [™]

Nature Neuroscience 20, 365–377 (2017) Cite this article

Woo, et al. Nat Neurosci. 2017

UCL

- Introduction
- AI for MRI acquisition and analysis
- AI for the diagnosis of MS
- Al for patient stratification
- Conclusions

Accelerated Imaging

Applying Deep Learning to Accelerated Clinical Brain Magnetic Resonance Imaging for Multiple Sclerosis

Ashika Mani^{1†}, Tales Santini^{2†}, Radhika Puppala^{3†}, Megan Dahl³, Shruthi Venkatesh³, Elizabeth Walker³, Megan DeHaven³, Cigdem Isitan³, Tamer S. Ibrahim², Long Wang⁴, Tao Zhang⁴, Enhao Gong⁴, Jessica Barrios-Martinez⁵, Fang-Cheng Yeh⁵, Robert Krafty⁶, Joseph M. Mettenburg⁷ and Zongqi Xia^{2,3*}

 Deep back-projection network to reconstruct higher-quality images from under-sampled k-space

- Comparable segmentation performance and association with clinical severity

Conventional T1 BRAVO Fast T1 BRAVO Fast T1 BRAVO with DL Sagittal

2:57 min → 1:13 min

Mani, et al. Front Neurol 2021

Accelerated Imaging

Applying Deep Learning to Accelerated Clinical Brain Magnetic Resonance Imaging for Multiple Sclerosis

Ashika Mani^{1†}, Tales Santini^{2†}, Radhika Puppala^{3†}, Megan Dahl³, Shruthi Venkatesh³, Elizabeth Walker³, Megan DeHaven³, Cigdem Isitan³, Tamer S. Ibrahim², Long Wang⁴, Tao Zhang⁴, Enhao Gong⁴, Jessica Barrios-Martinez⁵, Fang-Cheng Yeh⁵, Robert Krafty⁶, Joseph M. Mettenburg⁷ and Zongqi Xia^{2,3*}

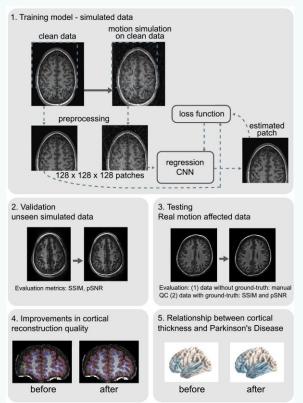
 Deep back-projection network to reconstruct higher-quality images from under-sampled k-space

- Comparable segmentation performance and association with clinical severity

Conventional FLAIR Fast FLAIR with DL Fast FLAIR Axial Coronal Sagittal

6:40 min → 1:13 min

Mani, et al. Front Neurol 2021


Image correction / Quality control

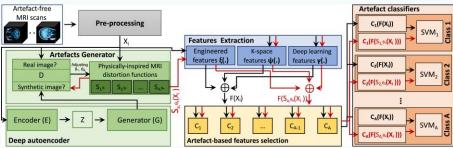
Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions

Ben A Duffy, Lu Zhao, Farshid Sepehrband, Joyce Min, Danny JJ Wang, Yonggang Shi, Arthur W Toga, Hosung Kim^{*}, for the Alzheimer's Disease Neuroimaging Initiative

 Retrospective motion correction using a motion simulation model combined with a 3D convolutional neural network (CNN)

- Significant improvement in cortical surface reconstruction and association with clinical status

Duffy, et al. Neuroimage 2021



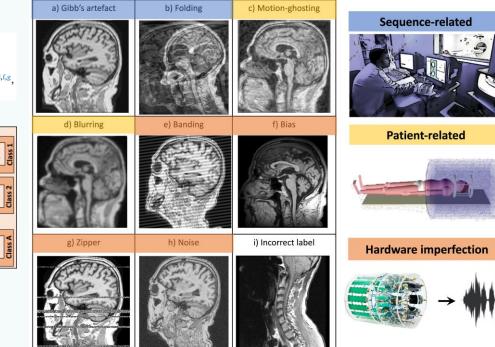


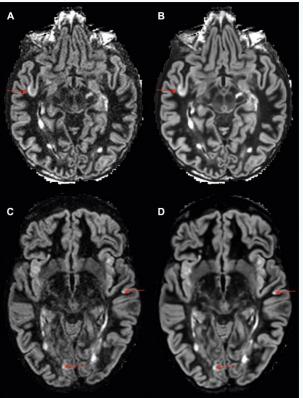
Image correction / Quality control

An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training

Daniele Ravi ^{a,d,e,*}, for the Alzheimer's Disease Neuroimaging Initiative¹, Frederik Barkhof ^{c,b,d,f,g}, Daniel C. Alexander ^{a,d}, Lemuel Puglisi ^d, Geoffrey J.M. Parker ^{b,d,f}, Arman Eshaghi ^{a,d,f}

Ravi, et al. Med Image Anal 2023

Contrast generation


Multicenter Evaluation of AI-generated DIR and PSIR for Cortical and Juxtacortical Multiple Sclerosis Lesion Detection

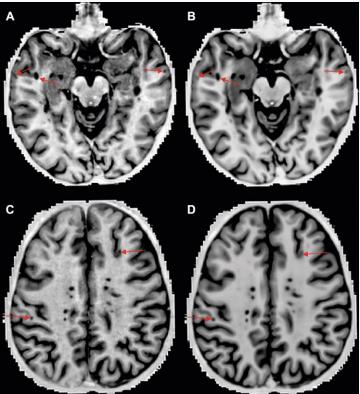
Piet M. Bouman, PhD • Samantha Noteboom, MSc • Fernando A. Nobrega Santos, PhD • Erin S. Beck, PhD • Gregory Bliault, MSc • Marco Castellaro, PhD • Massimiliano Calabrese, PhD • Declan T. Chard, PhD • Paul Eichinger, PhD • Massimo Filippi, PhD • Matilde Inglese, PhD • Caterina Lapucci, PhD • Andrzej Marciniak, PhD • Bastianan Moraal, PhD • Alfredo Morales Pinzon, PhD • Mark Müblau, PhD • Paolo Preziosa, PhD • Daniel S. Reich, PhD • Maria A. Rocca, PhD • Menno M. Schoonheim, PhD • Jos W. R. Twisk, PhD • Benedict Wiestler, PhD • Laura E. Jonkman, PhD • Charles R. G. Guttmann, PhD • Jeroen J. G. Geurts, PhD • Martijn D. Steenwijk, PhD

- Generative adversarial network (GAN) to generate DIR/PSIR from T1w and PD/T2w images

- High between-center (ICC= 0.81 for DIR, 0.75 for PSIR) and between-reader (ICC=0.76 for DIR, 0.85 for PSIR) reliability (N = 202)

Bouman, et al. Radiology 2023

Contrast generation

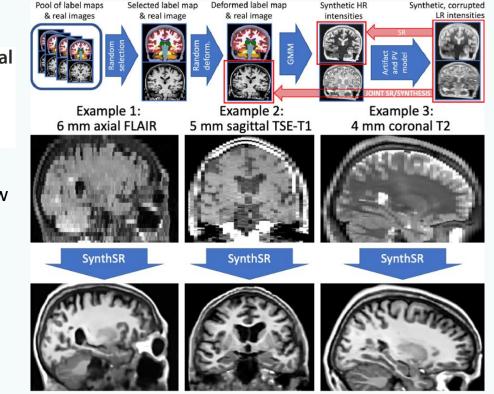

Multicenter Evaluation of AI-generated DIR and PSIR for Cortical and Juxtacortical Multiple Sclerosis Lesion Detection

Piet M. Bouman, PhD • Samantha Noteboom, MSc • Fernando A. Nobrega Santos, PhD • Erin S. Beck, PhD • Gregory Bliault, MSc • Marco Castellaro, PhD • Massimiliano Calabrese, PhD • Declan T. Chard, PhD • Paul Eichinger, PhD • Massimo Filippi, PhD • Matilde Inglese, PhD • Caterina Lapucci, PhD • Andrzej Marciniak, PhD • Bastianan Moraal, PhD • Alfredo Morales Pinzon, PhD • Mark Müblau, PhD • Paolo Preziosa, PhD • Daniel S. Reich, PhD • Maria A. Rocca, PhD • Menno M. Schoonheim, PhD • Jos W. R. Twisk, PhD • Benedict Wiestler, PhD • Laura E. Jonkman, PhD • Charles R. G. Guttmann, PhD • Jeroen J. G. Geurts, PhD • Martijn D. Steenwijk, PhD

- Generative adversarial network (GAN) to generate DIR/PSIR from T1w and PD/T2w images

- High between-center (ICC= 0.81 for DIR, 0.75 for PSIR) and between-reader (ICC=0.76 for DIR, 0.85 for PSIR) reliability (N = 202)

Bouman, et al. Radiology 2023



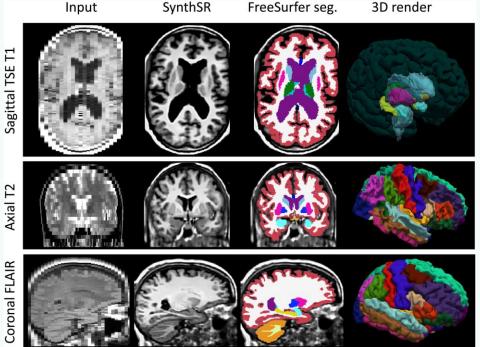
Super-resolution

SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry

Juan E. Iglesias^{1,2,3}*, Benjamin Billot², Yaël Balbastre¹, Colin Magdamo⁴, Steven E. Arnold⁴, Sudeshna Das⁴, Brian L. Edlow^{1,4,5}, Daniel C. Alexander², Polina Golland³, Bruce Fischl^{1,3}

- Turns clinical brain MRI scans of any contrast, orientation, and resolution into high-resolution T1w scans suitable for 3D morphometry

Super-resolution


SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry

Juan E. Iglesias^{1,2,3*}, Benjamin Billot², Yaël Balbastre¹, Colin Magdamo⁴, Steven E. Arnold⁴, Sudeshna Das⁴, Brian L. Edlow^{1,4,5}, Daniel C. Alexander², Polina Golland³, Bruce Fischl^{1,3}

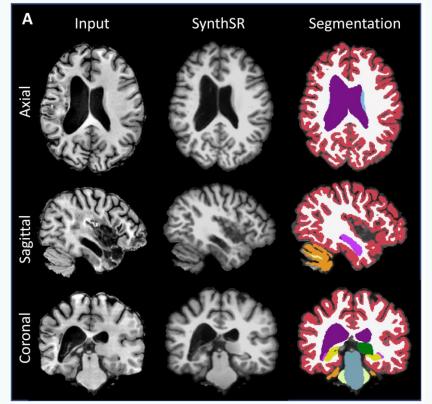
- Turns clinical brain MRI scans of any contrast, orientation, and resolution into high-resolution T1w scans suitable for 3D morphometry

- Performance on segmentation and registration tasks comparable to high-resolution T1w scans

Coronal FLAIR

Super-resolution

SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry

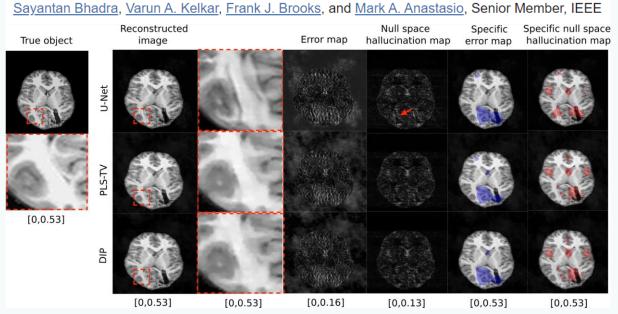

Juan E. Iglesias^{1,2,3}*, Benjamin Billot², Yaël Balbastre¹, Colin Magdamo⁴, Steven E. Arnold⁴, Sudeshna Das⁴, Brian L. Edlow^{1,4,5}, Daniel C. Alexander², Polina Golland³, Bruce Fischl^{1,3}

- Turns clinical brain MRI scans of any contrast, orientation, and resolution into high-resolution T1w scans suitable for 3D morphometry

- Performance on segmentation and registration tasks comparable to high-resolution T1w scans

- Robust to the presence of lesions

Iglesias, et al. Science Advances 2023



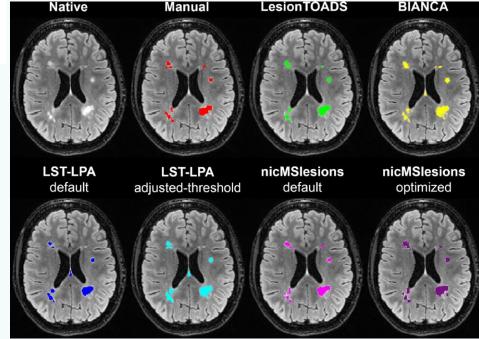
Hallucinations

On Hallucinations in Tomographic Image Reconstruction

- DL-based image reconstructions are associated with the danger of creating false structures (hallucinations)!

- This risk can be quantified and analysed

Bhadra, et al. IEEE Trans Med Imaging 2021



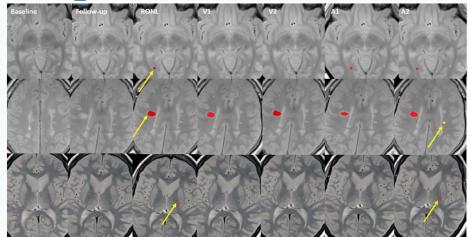
Al for MRI – Lesion segmentation

Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation

M.M. Weeda^{a,}, I. Brouwer^a, M.L. de Vos^a, M.S. de Vries^a, F. Barkhof^{a,b}, P.J.W. Pouwels^a, H. Vrenken^a

- MICCAI and ISBI MS lesion segmentation challenges
- CNN-based strategies outperform alternative methods
- Best performance with supervised methods optimized to the local dataset (ICC > 0.97 and median Dice's SI > 0.64)

AI for MRI – Lesion segmentation


Assessment of automatic decision-support systems for detecting active T2 lesions in multiple sclerosis patients

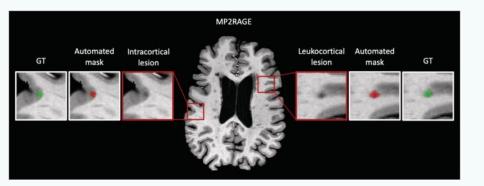
Alex Rovira^(D), Juan Francisco Corral, Cristina Auger, Sergi Valverde, Angela Vidal-Jordana^(D), Arnau Oliver, Andrea de Barros, Yiken Karelys Ng Wong, Mar Tintoré^(D), Deborah Pareto, Francesc Xavier Aymerich, Xavier Montalban, Xavier Lladó^(D) and Juli Alonso^(D)

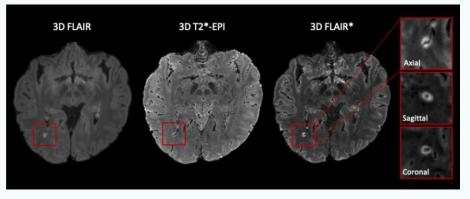
- For new/enlarging T2 lesions, automated methods are more sensitive than visual assessment but many false positives

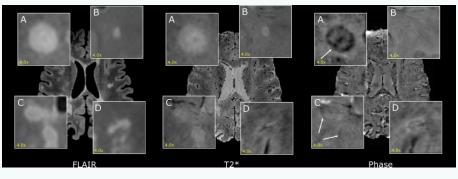
- Visually supervised automated methods could improve detection in clinical practice

Rovira, et al. Mult Scler 2022

	V1	V2	A1	A2	V1A2
True negatives	62 ^a	62 ^a	52ª	54ª	62ª
False negatives	9 ^a	4 ^a	3 ^a	1^{a}	2ª
True positives	29 ^a	34 ^a	35ª	37ª	36 ^a
False positives	Oa	0^{a}	10 ^a	8 ^a	0 ^a
Sensitivity (CI)	76.32 (59.76–88.56)	89.47 (75.20–97.06)	92.11 (78.62–98.34)	97.37 (86.19–99.93)	94.74 (85.25–99.36)
Specificity (CI)	100.00 (CI: 94.22–100.00)	100.00 (94.22–100.00)	83.87 (72.33–91.98)	87.10 (76.15–94.26)	100.00 (94.22–100.00)
Accuracy (CI)	91.00 (83.60–95.80)	96.00 (90.07–98.90)	87.00 (78.80–92.89)	91.00 (83.60–95.80)	98.00 (92.96–99.76)



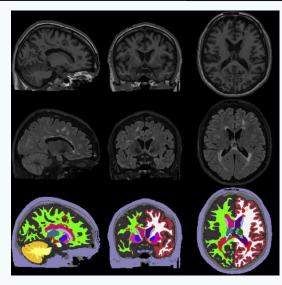



AI for MRI – Lesion segmentation

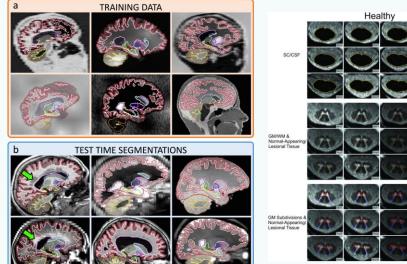
Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues

Francesco La Rosa ^{a,b,c,*}, Maxence Wynen ^{b,d,e,f}, Omar Al-Louzi ^{g,h}, Erin S Beck ^{c,g}, Till Huelnhagen ^{a,f,i}, Pietro Maggi ^{e,j,k}, Jean-Philippe Thiran ^{a,b,f}, Tobias Kober ^{a,f,i}, Russell T Shinohara ^{1,m,n}, Pascal Sati ^{g,h}, Daniel S Reich ^g, Cristina Granziera ^{o,p}, Martina Absinta ^{q,r}, Meritxell Bach Cuadra ^{b,f}

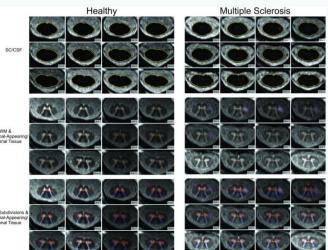
La Rosa, et al. Neuroimage Clin 2022



AI for MRI – Atrophy measurement


A contrast-adaptive method SynthSeg: Segmentation of brain MRI sc segmentation in multiple scl without retraining

Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis


Stefano Cerri^{a,b,*}, Oula Puonti^b, Don Benjamin Billot^{a,*}, Douglas N. Greve^b, Oula Puont Hartwig R. Siebner^{b,e,f}, Koen Van Le Bruce Fischl^{b,e,f}, Adrian V. Dalca^{b,e}, Juan Eugenio

Cerri, et al. Neuroimage Clin 2022

Billot, et al. Med Image Anal 2023

Tsagkas, et al. AJNR 2023

Sex: Age: Referring Physic

Al for MRI – Quantitative reports

Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence

Zoe Mendelsohn^{1,2,3,4,5} · Hugh G. Pemberton^{1,2,6} · James Gray⁷ · Olivia Goodkin^{1,2,3} Ferran Prados Carrasco^{2,3,8} · Michael Scheel⁴ · Jawed Nawabi^{5,9} · Frederik Barkhof^{1,2,3,10}

The utility of these tools should be critically evaluated:

- robustness of segmentation to inter-scanner variability and MR artifacts
- need for proven clinically-relevant cut-offs
- mandatory visual check

$\frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \frac{ \mathbf{L} } }{ \mathbf{L} } \frac{ \mathbf{L} }{ \mathbf{L} } \mathbf{L$	1		3 mm ³	1 mm	0.1	0.05	1.0	0.05	Lesion Size Distribution	10.0	Who
$\frac{1}{10000000000000000000000000000000000$	1		3 mm3	1 mm	0.1	0.05	1.0	0.05	a B Parket		
	MORPHOMETRY RESULTS									67.5	
$\frac{1}{10000000000000000000000000000000000$				10					100.	85.0	
$\frac{1}{10000000000000000000000000000000000$				A13					2 [*]	S 12.5	
	1000				And and a second se	1			- 1	-	
	1 martin			1 0	12.00	1	-	_		Z Persona	
$\frac{1}{10000000000000000000000000000000000$	1 4 220	5		110			14	0	3. I I I I I I I I I I I I I I I I I I I	\$ 77.5	
$\frac{1}{10000000000000000000000000000000000$	1.651.982					1	Se-	64	3	2 75.0	
	/ C.			1	2 . 6 .	10	ALCON	123	2 m	>	
$\frac{1}{10000000000000000000000000000000000$					2 2	20	Casel 1	Carlos I	-	12.5	
$\frac{1}{10000000000000000000000000000000000$	Contractor of				No. of Street,	1	10000			70.0	
$\frac{1}{10000000000000000000000000000000000$	1 20 20	5-11		1 · · · Y	6333		S	2.11		47.5	
$ \begin{array}{ c } \hline \begin{tabular}{ c } \hline \begin$		811		1 Co. 1003	1997)	W.C	State 1	67/1	Lesion Size (cm ²)	44 46	48 50 53 Age
$ \begin{array}{ c } \hline \begin{tabular}{ c } \hline \begin$	1 and	/		1990	ar/	3,255	N/NZ	and the second s			1.94
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$						130.20	No los	Carl Carl			
$ \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$						1000		7	Thalamus		Cortical
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						1000	A CARDON A COMPANY				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Brain Structure		Volume (cm ³)	Change	% ICV	Change		Change		40.0	
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Whole Brain		966.52	-3.45	74.24	-0.01		0		5 38.0	
Tabahas 9.72 0.914 0.75 -0.01 1 0 Cardia Gray Matter 10.53 11.64 0.72 0.97 1 0 Cardia Gray Matter 01.54 16.52 50.81 1.14 0.61 223 The answer of the other of the other o	Superior Lateral Ventricle	15	28.08	0.04	2.16	0.01	87	0		2 36.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Thalamus		9.73	-0.14	0.75	-0.01	1	0			
$\begin{array}{c creative difference of the Matter $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Cortical Gray Matter		353.95	11.45	27.19	0.97	1	0	•		
Improvement 20 0.50 0.02 0.03 0.03 0.05 LISION EXCLUST -0.66 0.69 0.60 10 15 LISION EXCLUST -0.66 0.69 0.60 10 16 LISION EXCLUST -0.66 0.69 0.60 10 16 LISION EXCLUST -0.76 1.64 0 11 6 LISION EXCLUST -0.76 1.64 0 11 6 LISION EXCLUST -0.76 1.63 0 11 6 LISION EXCLUST -0.76 1.63 0 11 6 CISION EXCLUST -0.76 1.63 0 1.63 0 1 LISION EXCLUST -0.76 1.63 0 1.63 0	Cerebral White Matter		401.54	-16.20	30.84	-1.14	61	22	4	8	
Entropies Letteral Vestricities 1.19 -0.66 0.69 -0.20 7 5 Station REGULTS Total Lesides Critical Perventivicular Infractoristical Decem White 0 <td>3rd Ventricle</td> <td></td> <td>1.59</td> <td>0.00</td> <td>0.12</td> <td>0.00</td> <td>83</td> <td>0</td> <td>5</td> <td>> 30.0</td> <td></td>	3rd Ventricle		1.59	0.00	0.12	0.00	83	0	5	> 30.0	
Information Information Open (Information) Open (Information) <td>Hippocampi</td> <td></td> <td>7.43</td> <td>0.24</td> <td>0.57</td> <td>0.02</td> <td>83</td> <td>-15</td> <td>0.8</td> <td>140</td> <td></td>	Hippocampi		7.43	0.24	0.57	0.02	83	-15	0.8	140	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Inferior Lateral Ventricles	5	1.19	-0.06	0.09	-0.00	73	5			
Total Lisson Lisson Carlos Developing De	LESION RESULTS					2002					•
Openet 1314 0 0 14 Colored 5.71 (* 0.15) 5.71 (* 0.15) ESCION Provide Vision 5.71 (* 0.15) 5.71 (* 0.15) ESCION Provide Vision 10.03 (cm) ¹ 10.03 (cm) ¹ 10.03 (cm) ¹ ESCION Provide Vision 10.03 (cm) ¹ 10.03 (cm) ¹ 10.03 (cm) ¹ Attrice 10.03 (cm) ¹ 10.03 (cm) ¹ 10.03 (cm) ¹ 10.04 (cm) ¹ Listice Change Visiona 10.05 (cm) ¹ 10.05 (cm) ¹ 10.05 (cm) ¹ 10.04 (cm) ¹ Listice Change Visiona 10.05 (cm) ¹ 10.05 (cm) ¹ 10.05 (cm) ¹ 10.05 (cm) ¹ Call Sci		Tota	Lesions	Leukocortical	Periventricula	r Infra	atentorial	Deep White		44 46	48 50 52 Age i
Liebo Brunders (%) 17(21(2)) Elston Orthanders (%) 17(21(2)) Elston Orthanders (%) New (4)(26(cm)) New (4)(26(cm)) New (4)(26(cm)) Elston Orthanders (%) New (4)(26(cm)) Elston Orthanders (%) New (4)(26(cm)) Elston Orthanders (%) Elston Ortha	Volume (cm ³)		34.96	1.33	31.36		0.79	1.48			
Listicia Bardenet (%) B7.17 (10.15) Listicia Bardenet (%) B7.17 (10.15) Listicia Warkenet (%) B7.17 (10.15) Listicia Wa	Count		134	46	8		14	66	and Ventricle		Нер
Construct Change Volumpol Total Lesions Lesionschlauf Perivationalist Disseg Walter Disseg Walter New 4 (0.5.6 cm) ¹ 10.81 cm) ¹ - 2 (0.02 cm) ¹ 1 (0.02 cm) ¹ Active 5 (0.75 cm) ² 1 (0.82 cm) ¹ 2 (0.31 cm) ¹ 1 (0.02 cm) ¹ Listing Change Summary The can sequed on 2015-09-11 1 (0.32 cm) ¹ 2 (0.31 cm) ¹ 1 (0.02 cm) ¹ Listing Change Summary The can sequed on 2015-09-11 and the can sequed on 2015-09-12 A MW Vision detected in the Leukacotocki, Photomoticki, DepthMer reglock), the total reshing team values 6.05 cm ³ . 6.05 cm ³ . 6.05 cm ³ . 9 EXECUTINE lissons detected in the Leukacotocki, Photomoticki, Dept Wither reglock), the total reshing team values 6.05 cm ³ . 6.05 cm ³ . 6.05 cm ³ . 9 EXECUTINE lissons detected in the Leukacotocki, Photomoticki, Dept Wither reglock), the total reshing team values 6.05 cm ³ . 6.05 cm ³ . 6.05 cm ³ . 9 EXECUTINE lissons detected in the Leukacotocki, Photomoticki, Dept Wither reglock), the total reshing team values 6.05 cm ³ . 6.05 cm ³ . 6.05 cm ³ . 6.05 cm ³ . <td>Lesion Burden (%)</td> <td>8.71</td> <td>(10.15)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.7</td> <td></td>	Lesion Burden (%)	8.71	(10.15)							6.7	
$\frac{1}{4 \text{ the } t} = \frac{1}{1000 \text{ cm}^3} + \frac{1}{1000 \text{ cm}^3} + \frac{2}{1000 \text{ cm}^3} + \frac{2}{1000 \text{ cm}^3} + \frac{1}{1000 \text{ cm}^3} + \frac{2}{1000 \text{ cm}^3} + \frac{1}{1000 \text{ cm}^3} +$	ESION DYNAMICS*										
Active 10,076 em/ 10,026 em/ 10,027 em/ 10,027 em/ 10,027 em/ 20,012 em/ 10,002 em/ 10,0	Counts (Change Volume)	Tota	Lesions	Leukocortical	Periventricula	r Infra	atentorial	Deep White	0.2		
A second maps formation (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	New	4 (0	.05 cm ³)	1 (0.01 cm ³)		2 (0	0.02 cm ³)	1 (0.02 cm ³)	5	C.06	
A statistic department (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Active	5 (0	.76 cm ³)	1 (0.02 cm ³)	1 (0.59 cm ³)	2 (0	0.13 cm ³)	1 (0.02 cm ³)	<u>S</u>		
Lesion Changes Summary The fram support on 2015-09-11 has a Total Lesion Volume of 34.56 cm ² comprised of 134 issions. The total Lesion Burréen Yi International 2015 has 37.69, of total centre has a Total Lesion Volume of 34.56 cm ² comprised of 134 issions. The total Lesion Burréen Yi A MWP liveles detected in the Lecknochronic, Primerrorization, Johannico Leopo Witherregion(s), the total active lesion volume is 0.65 cm ² . 9 EXECUTIVE license detected in the Lecknochronic, Primerrorization, Johannico Leopo Witherregion(s), the total receiving lesion volume is 0.65 cm ² . 9 EXECUTIVE license detected in the Lecknochronic, Primerrorization, Johannico Leopo Witherregion(s), the total receiving lesion volume is 0.65 cm ² . 10 Cm ² C	Resolving	9 (2	.09 cm ³)	1 (0.65 cm ³)	1 (0.71 cm ³)	3 (0	0.04 cm ³)	4 (0.68 cm ³)	75	2	•
The can sequence of 321-69-21 has Total Lesion Volume of 3.55 cm ² comprised of 134 kesion. The total Lesion Bowden 4, Compared to the sci an sequence of 321-69-16. A NEW Vision detected in the Leckacocotical, <i>Informational</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacocotical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacocotical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacocotical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacocotical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacocotical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacocotical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacototical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacototical, <i>Primatentical</i> , Open Wither region(s), the total residue lesion volume is 0.65 cm ³ . S ACTIVE tesions detected in the Leckacototical residue lesions volume is 0.65 cm ³ .	esion Change Summary	-				_			5	5	
Increased 515% to 515% of 515% of the total order of inflammatic. Compared to the total order of inflammatic. 4 MRM insure detected in the Landowsciel, Inflammatical, Depr MRe region(), the total new holino volume is 0.85 cm. 5 million. SECURING Insure detected in the Landowsciel, Inflammatical, Depr MRe region(), the total new holino volume is 0.85 cm. 5 million. SECURING Insure detected in the Landowsciel, Inflammatical, Depr MRe region(), the total new holino volume is 0.85 cm. 5 million. SECURING Insure detected in the Landowsciel, Informatical, Depr MRe region(), the total new holino volume is 0.85 cm. 5 million. Security of the total new holino volume is 0.85 cm. 5 milli		15.00.21	has a Total Los	ion Volume of 74	heritanees from 20	of 174 lesions	The total Lorion	Burden %	501	5	
A NOW lesions detected in the Lockscottical, (Inferentiacular, (Inferentiacular, Copy White regions), the table resident lesion volume is 6.05 cm ³ . SACTIVE lesions detected in the Lockscottical, (Inferentiacular, (Inferentiacular, Copy White regions), the table resident lesion volume is 6.05 cm ³ . SACTIVE lesions detected in the Lockscottical, (Inferentiacular, Inferentiacular, Copy White regions), the table resident lesion volume is 6.05 cm ³ . SACTIVE lesions detected in the Lockscottical, (Inferentiacular, Inferentiacular, Copy White regions), the table resident lesion volume is 6.05 cm ³ . SACTIVE lesions detected in the Lockscottical, (Primetricular, Inferentiacular, Copy White regions), the table resident lesion volume is 6.05 cm ³ . Sactive lesions detected in the Lockscottical, (Primetricular, Inferentiacular, Copy White regions), the table resident lesion volume is 6.05 cm ³ . Sactive lesions detected in the Lockscottical, (Primetricular, Inferentiacular, Copy White regions), the table resident lesion volume is 6.05 cm ³ . Sactive lesions detected in the Lockscottical, (Primetricular, Inferentiacular, Inferentiacular	increased 0.15% to 8.7	7196 of th	ne total cerebral v	white matter.	and curry comprised	0 104 10101	. The court courter	burden ve	3	\$	
4 NWH velows detected in the (Leokacoccid), (Intertotrical), Dep VIBAre region(2), the total new felow velows is 6.05 cm ³ . 5.ACTIVE lesions detected in the (Leokacoccid), (Intertotrical), Copy VIBAre region(2), the total active lesion volume is 6.05 5.ACTIVE lesions detected in the (Leokacoccid), (Intertotrical), Copy VIBAre region(2), the total active lesion volume is 6.05 5.ACTIVE lesions detected in the (Leokacoccid), (Printerotrical), (Intertotrical), Copy VIBAre region(2), the total active lesion volume is 6.05 5.ACTIVE lesions detected in the (Leokacoccid), (Printerotrical), Copy VIBAre region(2), the total active lesion volume is 6.05 5.ACTIVE lesions detected in the (Leokacoccid), (Printerotrical), Interotrical (Leopy VIBAre region(2)), the total active lesion volume is 6.05 5.ACTIVE lesions detected in the (Leokacoccid), (Printerotrical), Copy VIBAre region(2)), the total active lesion volume is 6.05 5.ACTIVE lesions detected in the Leokacoccidi, Printerotrical, Interotectical (Regions centrical) and reactive VIBARE VIBARE volume is a statistical of the total active lesion volume is 0.05 6.ACTIVE lesions detected in the Leokacoccidi, Printerotrical, Interotectical (Regions centrical) and reactive VIBARE VIBARE volume is a statistical of the total active lesion volume is 0.05 6.ACTIVE volume is a statistical of the total active lesion volume is 0.05 6.ACTIVE volume is a statistical of total on the VIBARE volume is 0.05 6.ACTIVE volume is a statistical of total on the VIBARE volume is 0.05 6.ACTIVE	Compared to the scan acc	puired on	2015-04-16:								
SACTIVE Issues detected in the Lankacotical, Periodianeous, 2nd/automatical, Deps Wither region(s), the table receive Issues in sub- SACSIVER Issues detected in the Lankacotical, Periodianeous, 2nd/automatical, Deps Wither region(s), the table receive Issues in the Lankacotical, Periodianeous Issues				ratentorial. Deep W	thite region(s) the to	tal new lesion	volume is 0.05 cr			0.4	
Com ² - SPR50UVING lissions detected in the <i>Loukacotockit, Perimetricular, Infratentinal, Deep White region(s)</i> , the total resolving lission volume is 2,00 cm ³ . Leader Dynamia are calculated using drangs in T1 and T2 FUXE signal interaction. The number of active (entroping or enhancing) and resolving	S ACTIVE lesions det								0.0		
is 2.09 cm ³ . Lesion Dynamics are calculated using change in T1 and T2 FUXE signal interesties. The number of active (enlarging or enhancing) and resolving								000000-000		44 46	40 50 52 Age (
	9 RESOLVING lesion is 2.09 cm ³ .	s detected	d in the Leukocon	tical, Periventricular	r, Infratentorial, Deep	o White region	(s), the total resolution	ving lesion volume			
		lated using	change in T1 and	T2 FLAIR signal int	ensities. The number	of active (enlar	roing or enhancing)	and resolving			
(brinking of dimming) lesions may affect lesion court. Changes in lesion characteristics such as separation or confluence of existing lesions may affect the lesion court.	(shrinking or dimming) lesions										

Mendelsohn, et al. Neuroradiology 2022

- Introduction
- AI for MRI acquisition and analysis
- Al for the diagnosis of MS
- Al for patient stratification
- Conclusions

AI for the diagnosis of MS

Artificial Intelligence System Approaching Neuroradiologist-level Differential Diagnosis Accuracy at Brain MRI

Andreas M. Rauschecker, MD, PhD* • Jeffrey D. Rudie, MD, PhD* • Long Xie, PhD • Jiancong Wang, BS • Michael Tran Duong, BA • Emmanuel J. Botzolakis, MD, PhD • Asha M. Kovalovich, MD • John Egan, MD • Tessa C. Cook, MD, PhD • R. Nick Bryan, MD, PhD • Ilya M. Nasrallah, MD, PhD • Suyash Mohan, MD • Iames C. Gee, PhD

- Al system (DL+feature engineering+Bayesian classifier) for differential diagnosis across a range of brain diseases including MS (N~100)

- Performance similar to academic neuroradiologists (91% vs 86%, p=0.20), higher than neuroradiology fellows (77%, p=0.003), general radiologists (57%, p<0.001), and residents (56%, p<0.001)

Rauschecker, et al. Radiology 2020

ADEM

CADASIL Adrenoleukodystrophy

CNS Lymphoma

High-Grade Glioma

HIV Encephalopathy

Low-Grade Metastases Glioma

Migraine

MS: Active

MS: Inactive

MS: Tumefactive

Susac

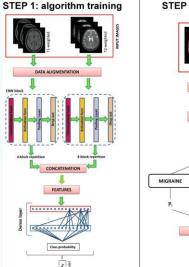
NMO

PRES

Small Vessel Ischemic Syndrome Disease

Toxic Leukoencephalopathy

Vascular Ischemia



AI for the diagnosis of MS

Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics

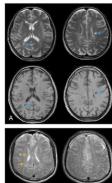
Maria A. Rocca, MD,*† Nicoletta Anzalone, MD,‡§ Loredana Storelli, PhD,* Anna Del Poggio, MD,‡ Laura Cacciaguerra, MD,*†§ Angelo A. Manfredi, MD,§// Alessandro Meani, MSc,* and Massimo Filippi, MD*†§¶

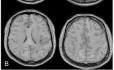
- CNN for differential diagnosis based on T1w and T2w across MS, NMOSD, migraine, and vasculitis (N=268)
- In the test set, deep learning was better than expert raters, highest diagnostic accuracy in MS (99% vs 73%% and 82%, p<0.001) and the lowest in NMOSD (88.6% vs 4.4%, p<0.001, for both raters)

STEP 2: algorithm application

FEATURES

TRAINED CNR


Highest probability selectio

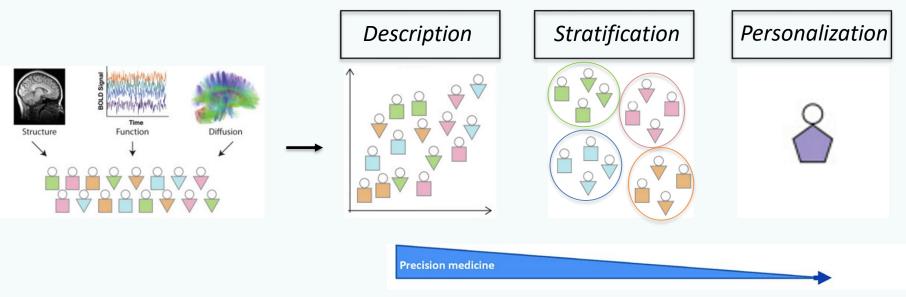

DISEASE

NMOSD

VASCULITIS

Algorithm vs expert reader

- Introduction
- AI for MRI acquisition and analysis
- AI for the diagnosis of MS
- Al for patient stratification
- Conclusions



Al for patient stratification

MS is neurobiologically and phenotypically heterogeneous. MRI abnormalities are objective disease markers. Handling heterogeneity is crucial for personalized clinical management.

Colliot, et al. Machine Learning for Brain Disorders 2023

Al for patient stratification – *Predictive models*

A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging

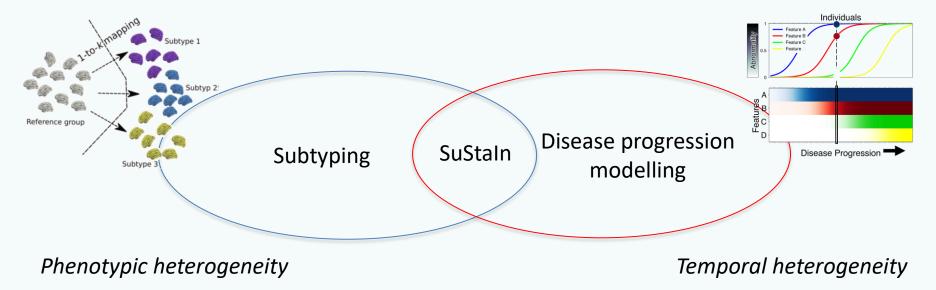
Loredana Storelli, PhD,* Matteo Azzimonti, MD,*†‡ Mor Gueye, MD,*†‡ Carmen Vizzino, MSc,* Paolo Preziosa, MD, PhD,*† Gioachino Tedeschi, MD,§ Nicola De Stefano, MD, PhD,// Patrizia Pantano, MD, PhD,¶# Massimo Filippi, MD,*†‡**†† and Maria A. Rocca, MD*†‡

- CNN to predict 2-year EDSS, SDMT, and EDSS+SDMT worsening based on T1w and T2w scans (N=373)

- Out-of-sample accuracy was 83% (for EDSS), 68% (for SDMT), and 86% (for EDSS+SDMT, 70% for human raters)

EDSS-based model SDMT-based model EDSS + SDMT-based model Receiver Operating Characteristic Receiver Operating Characteristic Receiver Operating Characteristi 0.8 - 0.6 1.SPECIEICIT

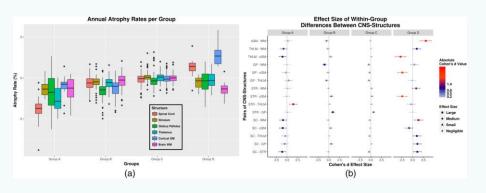
Storelli, et al. Invest Radiol 2020



AI for patient stratification – Subtyping and DPM

Family of (mostly unsupervised or semi-supervised) machine learning algorithms that estimate disease subgroups and/or the most probable order of events over the course of the disease

Colliot, et al. Machine Learning for Brain Disorders 2023



AI for patient stratification – *Subtyping*

Classification of multiple sclerosis based on patterns of CNS regional atrophy covariance

Charidimos Tsagkas ^{1,2,3} Katrin Parmar ^{1,2} Simon Pezold ⁴ Christian Barro ^{1,5}
Mallar M. Chakravarty ^{6,7,8} Laura Gaetano ⁹ Yvonne Naegelin ¹
Michael Amann ^{1,3,4} Athina Papadopoulou ^{1,2,10} Jens Wuerfel ^{3,4,10}
Ludwig Kappos ^{1,2} Jens Kuhle ¹ Till Sprenger ^{1,11} Cristina Granziera ^{1,2}
Stefano Magon ^{1,12}

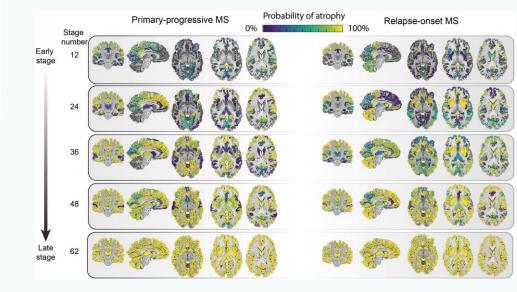
JAMA Neurology | Original Investigation

Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis

Ermelinda De Meo, MD; Emilio Portaccio, MD; Antonio Giorgio, MD; Luis Ruano, MD; Benedetta Goretti, MSc; Claudia Niccolai, MSc; Francesco Patti, MD; Clara Grazia Chisari, MSc; Paolo Gallo, MD; Paola Grossi, MSc; Angelo Ghezzi, MD; Marco Roscio, MSc; Flavia Mattioli, MD; Chiara Stampatori, MSc; Marta Simone, MD; Rosa Gemma Viterbo, MSc; Raffaello Bonacchi, MD; Maria A. Rocca, MD; Nicola De Stefano, MD; Massimo Filippi, MD; Maria Pia Amato, MD

Latent factor analysis on 1212 pwMS with BRB-N + Stroop

5 cognitive phenotypes: Preserved, mild verbal memory/semantic fluency, mild multi-domain, severe attention/executive, severe multi-domain



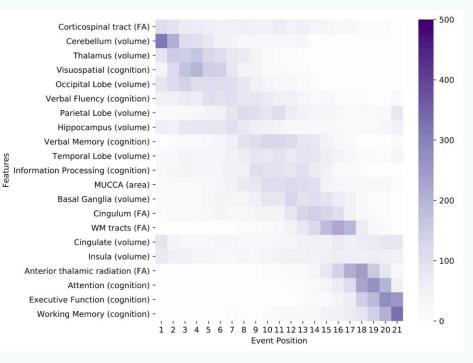
AI for patient stratification – Disease progression modelling

Progression of regional grey matter atrophy in multiple sclerosis

Arman Eshaghi, ^{1,2} Razvan V. Marinescu,² Alexandra L. Young,² Nicholas C. Firth,² Ferran Prados,³ M. Jorge Cardoso,³ Carmen Tur,¹ Floriana De Angelis,¹ Niamh Cawley,¹ Wallace J. Brownlee,¹ Nicola De Stefano,⁵ M. Laura Stromillo,⁵ Marco Battaglini,⁵ Serena Ruggieri,^{6,7} Claudio Gasperini,⁶ Massimo Filippi,⁸ Maria A. Rocca,⁸ Alex Rovira,⁹ Jaume Sastre-Garriga,¹⁰ Jeroen J. G. Geurts,¹¹ Hugo Vrenken,¹² Viktor Wottschel,¹² Cyra E. Leurs,¹³ Bernard Uitdehaag,¹³ Lukas Pirpamer,¹⁴ Christian Enzinger,^{14,15} Sebastien Ourselin,^{3,4} Claudia A. Gandini Wheeler-Kingshott,^{1,16,17} Declan Chard,^{1,4} Alan J. Thompson,¹ Frederik Barkhof,^{1,3,4,12} Daniel C. Alexander² and Olga Ciccarelli^{1,4} on behalf of the MAGNIMS study group*

- Event-based model on atlas-defined GM regional volumes (N=1417)
- Cingulate cortex, brainstem, thalamus are the first to become atrophic
- Stage change over time correlates with disability accumulation

Eshaghi, et al. Brain 2018



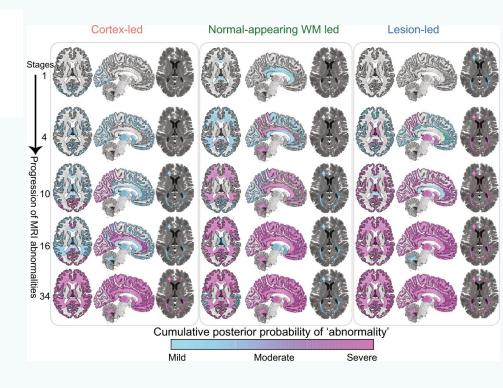
AI for patient stratification – Disease progression modelling

The sequence of structural, functional and cognitive changes in multiple sclerosis

Iris Dekker^{a,b}, Menno M. Schoonheim^c, Vikram Venkatraghavan^d, Anand J.C. Eijlers^c, Iman Brouwer^a, Esther E. Bron^d, Stefan Klein^d, Mike P. Wattjes^e, Alle Meije Wink^a, Jeroen J. G. Geurts^c, Bernard M.J. Uitdehaag^b, Neil P. Oxtoby^f, Daniel C. Alexander^f, Hugo Vrenken^a, Joep Killestein^b, Frederik Barkhof^{a,f,g,1}, Viktor Wottschel^{a,1,*}

- EBM on T2-LL, brain and spinal cord volumes,
 rs-fMRI centrality, FA of major WM tracts, cognition (N=295)
- GM atrophy of the cerebellum, thalamus, and microstructural damage of the CST are early events
- Higher disability and impaired cognition are associated with earlier functional changes of the DMN and spinal cord atrophy

Dekker, et al. Neuroim Clin 2021

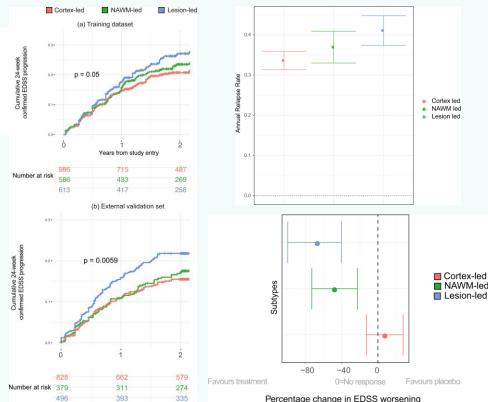

Al for patient stratification – *SuStaln*

Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data

Arman Eshaghi ^{1,2^M}, Alexandra L. Young^{2,3}, Peter A. Wijeratne[®] ², Ferran Prados ^{1,2,4}, Douglas L. Arnold⁵, Sridar Narayanan⁵, Charles R. G. Guttmann⁶, Frederik Barkhof ^{1,2,7,8}, Daniel C. Alexander ², Alan J. Thompson ¹, Declan Chard ^{1,9,10} & Olga Ciccarelli^{1,9,10}

- SuStaIn on T2-LL, GM (lobar) volumes, NAWM T1/T2 ratio (N=6322)

- Three MRI-driven phenotypes (Cortex, NAWM-, and Lesion-led)

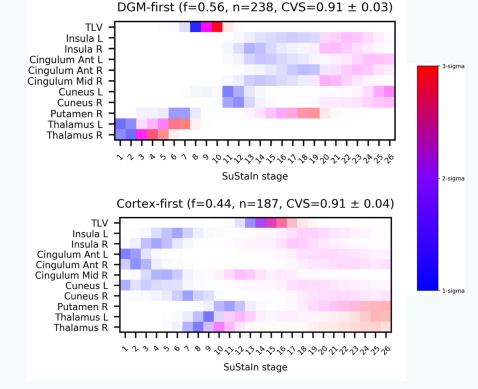

Al for patient stratification – *SuStaln*

Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data

Arman Eshaghi () ^{1,2}²², Alexandra L. Young^{2,3}, Peter A. Wijeratne () ², Ferran Prados () ^{1,2,4}, Douglas L. Arnold⁵, Sridar Narayanan⁵, Charles R. G. Guttmann⁶, Frederik Barkhof () ^{1,2,7,8}, Daniel C. Alexander () ², Alan J. Thompson () ¹, Declan Chard () ^{1,9,10} & Olga Ciccarelli^{1,9,10}

- SuStaIn on T2-LL, GM (lobar) volumes, NAWM T1/T2 ratio (N=6322)
- Three MRI-driven phenotypes (Cortex, NAWM-, and Lesion-led)
- Lesion-led subtype is associated with higher risk of CDP and relapse rate, and positive treatment response

Eshaghi, et al. Nat Comm 2021

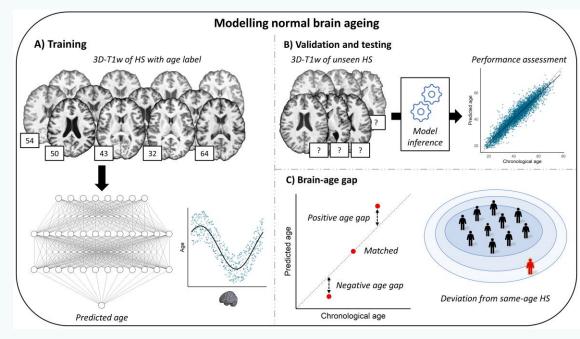


Al for patient stratification – *SuStaln*

Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach

Giuseppe Pontillo^{1,2} \odot · Simone Penna² · Sirio Cocozza¹ · Mario Quarantelli³ · Michela Gravina² · Roberta Lanzillo⁴ · Stefano Marrone² · Teresa Costabile⁵ · Matilde Inglese^{6,7} · Vincenzo Brescia Morra⁴ · Daniele Riccio² · Andrea Elefante¹ · Maria Petracca⁴ · Carlo Sansone² · Arturo Brunetti¹

- SuStaIn on T2-LL and GM volumes from AAL atlas (N=425)
- Two MRI-driven phenotypes (DGM-first, Cortex-first)
- Higher baseline stage and DGM-first subtype associated with long-term (10y) disability worsening, transition to SP course, and cognitive impairment

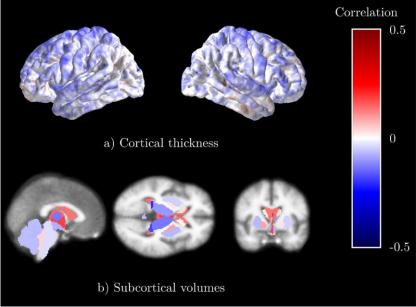


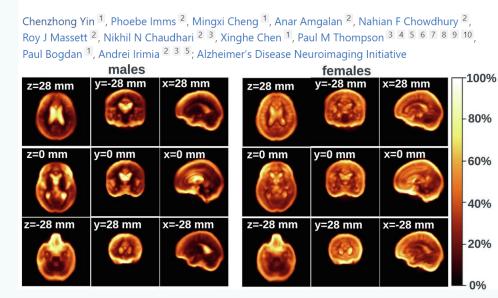
Pontillo, et al. Eur Radiol 2022

Al for patient stratification – The brain-age paradigm

- Using machine learning, chronological age is modeled as a function of (structural) brain MRI in healthy subjects
- The difference between predicted and chronological age (*brain-age gap*) as an <u>age-adjusted global metric of brain</u> (structural) health

ole<mark>sM</mark>eetinc



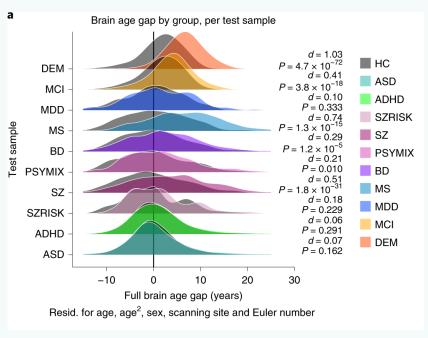


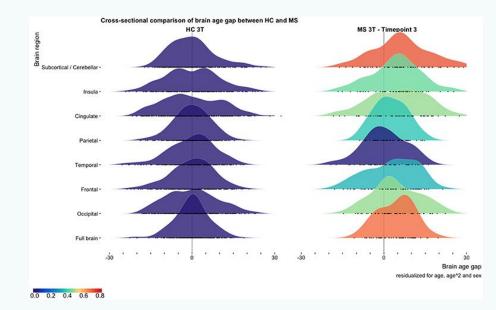
Deep neural networks learn general and clinically relevant representations of the ageing brain

Esten H. Leonardsen a,b,* , Han Peng c, Tobias Kaufmann b,d , Ingrid Agartz b,e,f , Ole A. Andreassen b, Thomas Wolfers a,b,1 , Yunpeng Wang $^{a,\bar{1}}$

Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment

Leonardsen, et al. Neuroimage 2022

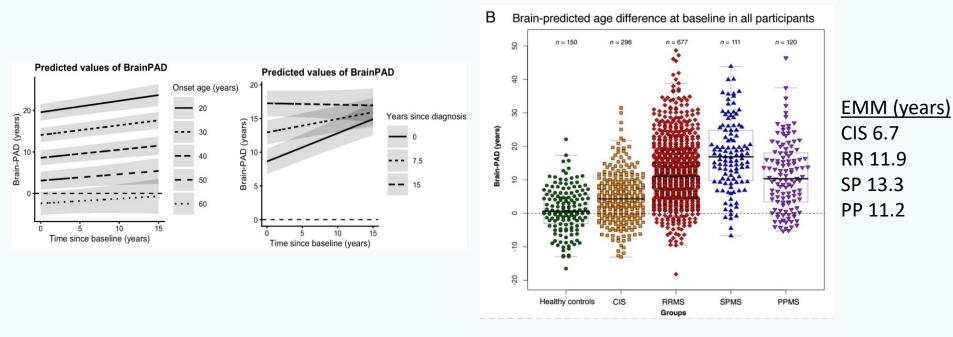

Yin, et al. PNAS 2023



MS is associated with older appearing brains (i.e., positive brain-age gap)

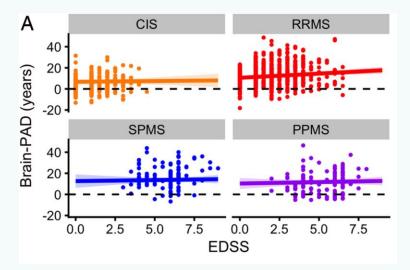
Kaufmann, et al. Nat Neurosci 2019

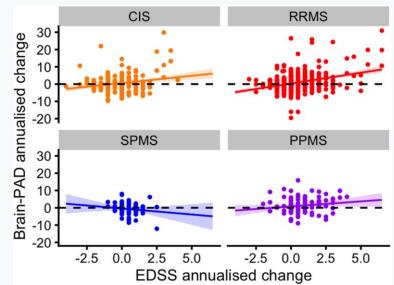
Hogestol, et al. Front Neurol 2019



The brain-age gap increases over time...

and varies with clinical phenotype


Cole, et al. Ann Neurol 2020

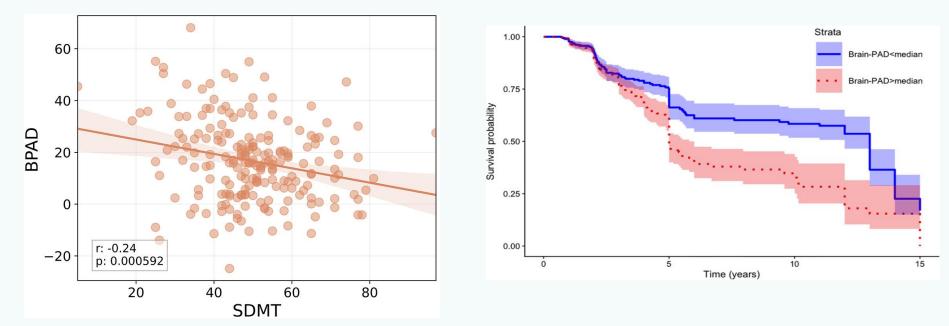


The brain-age gap is associated with clinical disability

Cross-sectionally (b=0.64, p<0.001)

Longitudinally (r=0.26, p<0.001)

Cole, et al. Ann Neurol 2020

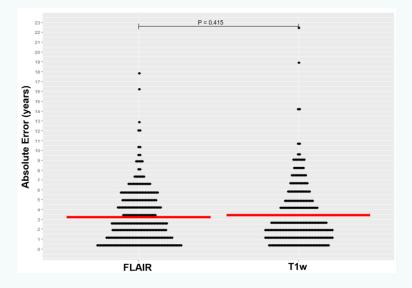


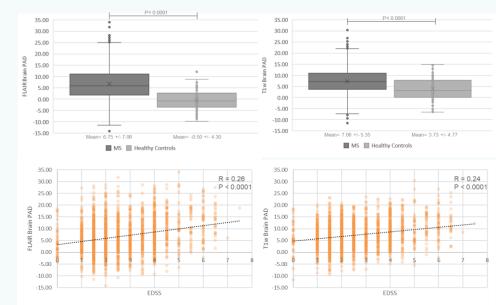
The brain-age gap is associated with cognition...

and predicts disability worsening

Denissen, et al. Eur J Neurol 2022

Cole, et al. Ann Neurol 2020





Brain-age prediction is feasible on 3D-FLAIR scans (compared to T1w-based models)

Comparable predictive performance

Comparable sensitivity to MS and related disability

Colman, et al. ISMRM 2022

- Introduction
- AI for MRI acquisition and analysis
- Al for the diagnosis of MS
- Al for patient stratification
- Conclusions

Conclusions

• AI is all around us

Conclusions

- AI is all around us
- We are going towards generalist medical AI

Foundation models for generalist medical artificial intelligence

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M. Krumholz, Jure Leskovec, Eric J. <u>Topol</u> A <u>Pranav Rajpurkar</u>

<u>Nature</u> 616, 259–265 (2023) <u>Cite this article</u>

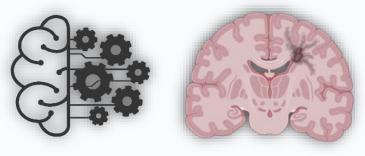
Conclusions

- AI is all around us
- We are going towards generalist medical AI
- Al is transforming the (radiologist) profession

Foundation models for generalist medical artificial intelligence

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M. Krumholz, Jure Leskovec, Eric J. Topol 🖾 & Pranav Rajpurkar 🖾

<u>Nature</u> **616**, 259–265 (2023) Cite this article


Will Artificial Intelligence Replace Radiologists?

Curtis P. Langlotz, MD, PhD

"Will AI replace radiologists?" is the wrong question. The right answer is: Radiologists who use AI will replace radiologists who don't

Contacts

e-mail: g.pontillo@amsterdamumc.nl g.pontillo@ucl.ac.uk *twitter*: @giupontillo

